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Abstract

Based on a front tracking scheme, we have presented a comprehensive algorithm for the study of a deformable bubble
moving in a tube in the presence of a soluble or an insoluble surfactant. The emphasis here is on the dynamic adsorption of
the soluble surfactant which non-linearly alters the surface tension, and this in turns affects the flow and transport in a
complicated way. Furthermore, since a bubble–liquid interface is being examined, there is a need to accommodate a con-
centration jump across the interface in the evaluation of flow and transport. Standard numerical procedures need to be
modified to accommodate this feature. Based on the physics governing the problem, an axisymmetric formulation is found
to be adequate and is thus considered. The adsorption scheme for the soluble surfactant is carefully designed such that the
total mass of the surfactant is well conserved, and the mass flux is accurately resolved by using an interface indicator func-
tion. This represents an advance in treating problems of this class. Tests on the efficacy of various aspects of the algorithm
have been carried out. The algorithm has the flexibility of studying different models for adsorption/desorption and surfac-
tant surface tension models, such as the Langmuir and the Frumkin models. These models have significant practical rel-
evance. The numerical results obtained are qualitatively consistent with results where available. The results presented
include an example of Marangoni flow which causes a bubble to propel out of its initial static location due to the devel-
opment of a surface tension gradient. It is also shown that the bubble motion in Poiseuille flow may be significantly slowed
down due to the presence of a soluble surfactant in the bulk medium. In that case, the Marangoni induced motion is in a
direction opposite to that driven by the bulk pressure. Our study indicates that as the location of the adsorptive interface
gets closer to the tube wall, the bulk fluid in the vicinity of the interface may become depleted of surfactant, an observation
that has particular significance in understanding gas embolism and for developing therapeutic measures.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Our goal here is to develop a general algorithm for computing the convection-diffusion transport of surface
active agents (surfactants) from the bulk medium (continuous phase) contained in a tube onto the surface of a
bubble in the medium (dispersed phase). We illustrate our method through the investigation of the behavior of
a gas bubble immersed in an arteriolar blood vessel or micro vessel with liquid-phase soluble or insoluble sur-
factant. The soluble surfactant present in the liquid phase gets adsorbed onto or is desorbed from the gas–
liquid interface. Simulating this complex system involves the detailed description of the interaction between
bulk quantities and excessive surface quantities in terms of surfactant surface concentration and non-linear,
composition dependent alteration of surface tension. Depending on the surface concentration of surfactant,
this non-linear interaction affects the flow field and the shape/dynamics of the bubble in a complicated way.

This investigation has particular significance in the study of gas embolism, a common syndrome for surgery
and decompression sickness. Gas bubbles may enter the blood stream during cardiopulmonary bypass for car-
diac operations or in vascular procedures. This may also happen due to decompression from hyperbaric expo-
sures, such as in diving or extravehicular activity during space exploration. The intravascular gas emboli may
deposit into organs, like the heart or the brain, and as a result, cause permanent injury. Surfactant based inter-
vention [2,14] is a novel treatment to eliminate such risks, and the present study will enable an evaluation of
this process. A suitable, soluble, inert surfactant introduced into the system may adsorb onto the gas–liquid
interface and may modify the interfacial tension, and also shield biological moieties in the blood stream from
encountering an adsorptive surface. Our investigation has significance also in the study of activation of blood
clotting, initiation of inflammation, and testing with biochemical reaction in a multiphase flow regime.

In regard to existing literature relevant to the problem, the motion of a clean bubble in a tube containing a
Newtonian or a non-Newtonian fluid has been extensively studied. Some recent contributions in this area in-
clude those of Cavanagh and Eckmann [5] on stationary gas bubbles in Newtonian flows in an inclined tube
and Tsai and Miksis [42] study on the dynamics of a drop in a constricted capillary fluid filled tube using a
boundary integral method. Sussman and Puckett [39] have described a coupled level set/volume-of-fluid
(CLSVOF) method and have, among other examples, demonstrated the capability of the method to compute
the steady rise of an axisymmetric gas bubble rising in a viscous liquid with a density ratio is 714:1 and a vis-
cosity ratio of 6667:1. The far-field boundary condition, i.e., the pressure on the walls is prescribed to be p =
z/Fr, where Fr is the Froude number. This method is stated to be more accurate than either the level set or
volume-of-fluid method alone especially, when computing problems for which the surface tension and the
changes in the topology of the free surface are dominant features of the flow. Sussman [40] has employed
CLSVOF method to compute the growth and collapse of vapor bubbles to overall second order accuracy.
The discretization of the free surface pressure boundary condition is based on the method described by Gibou
et al. [19] for solving the Poisson equation, and this feature enables the enforcement of the boundary condition
to second order accuracy. A comprehensive review of the experimental and theoretical results on a bubble
moving in an infinite non-Newtonian fluid is presented by Chhabra [8,9], and De Kee and Chhabra [11]. Bub-
ble shape in non-Newtonian fluids has been studied by De Kee, Chan Man Fong and Yao [12]. Their results
indicate the possibility of cusp formation at the rear end of the bubble. Rodrigue [34,35] has proposed a gen-
eralized correlation for gas bubbles rising in both uncontaminated viscous Newtonian and power-law fluids.

The presence of a surfactant in the medium makes the bubble problem very much more complicated. The
effects of insoluble surfactants on drop deformation and breakup in extension flow have been investigated by
Stone [38]. Since the surfactant is assumed to be insoluble, there is no net mass transport between the bulk
phase and the interface. A boundary integral method has been applied to solve for the velocity. Jan and Try-
ggvason [21] have presented a computational procedure based on the front tracking method for investigating
the behavior of a bubble contaminated by an insoluble surfactant. Tsai and Miksis [43] have extended their
earlier work on clean bubbles to take into account the effects of an insoluble surfactant on the dynamics of
bubble snap-off. In fully 3-D simulations, Li and Pozrikidis [25] and Yon and Pozrikidis [48] have studied var-
ious cases of drop deformation in the presence of an insoluble surfactant in the limit of Stokes flow. They have
employed the boundary integral method. Eggleton, Pawar and Stebe [15] have investigated the effect of the
non-linear equation of state for a drop in an extension flow with an insoluble surfactant. Eggleton, Tsai
and Stebe [16] have studied the onset of tip streaming in presence of insoluble surfactants.
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In regard to the presence of a soluble surfactant, analytical results have been obtained for a few simplified
cases. O~guz and Sadhal [30] have used a matched asymptotic analysis to study the effects of a soluble surfac-
tant on the motion of drops. The low Reynolds number flow is associated with a steady stagnant cap model on
a spherical drop [37]. Park [31] has investigated the steady motion of a long inviscid bubble displacing a vis-
cous fluid under the influence of a soluble surfactant in the Stokes flow regime using an asymptotic approach.
The result obtained is able to explain the film thickening behavior at low Ca that is observed in experiments.
Soluble surfactant effects have been considered in the Stokes flow limit by Milliken and Leal [28] for an axi-
symmetric drop, and recently by Zhou et al. [49] for describing 3-D drop–drop interactions and coalescence. In
[49], a finite element method has been proposed to solve drop interactions and coalescence problems in the
presence of a soluble surfactant, in the Stokes regime. It is unclear how well the mass conservation for the
soluble surfactant has been satisfied in that study. Ghadiali and Gaver [17] have demonstrated the influence
of non-equilibrium surfactant dynamics on the flow of a semi-infinite bubble in Stokes regime. Rodrigue, De
Kee and Chan Man Fong [36] have investigated the slow motion of a single gas bubble rising in a contami-
nated fluid described by power-law or three parameter Carreau models. Their analysis shows the balance
between shear thinning and Marangoni effects.

Recent numerical simulations of the behavior of a drop in the presence of a surfactant have involved con-
formal mapping, volume-of-fluid, and level set methods. A finite-volume based numerical approach has been
employed by Leppinen, Renksizbulut and Haywood [24] to solve the coupled set of governing equations for a
situation involving an insoluble surfactant. The algorithm employs non-orthogonal grid generation. Cuenot,
Magnaudet and Spennato [10] have numerically investigated the effects of a soluble surfactant on the flow
around a spherical bubble. They have treated the bubble as a void and solved the formulation using orthog-
onal curvilinear coordinates. The shape of the drop has been assumed to remain spherical throughout this sim-
ulation. Liao and McLaughlin [27] have simulated the effects of a surfactant on the unsteady motion and
shape of a single bubble released in water. They have considered the bubble to be immersed in an unbounded
liquid medium and have also treated the bubble as a void. A time-dependent mapping method is utilized in this
study. Even though it is stated that a ‘‘void bubble’’ is not a constraining feature for the mapping method, it
may be noted that a detailed numerical study of the dispersed and continuous phases within a confined tube
would be considerably more complicated with this method. Li and Mao [26] have used an approach similar to
that of Liao and McLaughlin [27]. Ghadiali, Halpern and Gaver [18] have shown that a dual-reciprocity
boundary element method can be utilized to evaluate bulk convective transport of a soluble surfactant in a
steady Stokes flow with a free surface.

Renardy and co-workers [13,33] have employed the volume-of-fluid method, assuming a linear relation
between the surfactant concentration and surface tension. James and Lowengrub [20] have proposed a
surfactant-conserving volume-of-fluid scheme for interfacial flows with an insoluble surfactant. Ceniceros
[6] has used a hybrid level-set and front tracking method to study the surfactant effects on capillary waves.
Xu and Zhao [47] present a methodology to simulate surfactant transport on a deformable interface using
the level set method. However, satisfying mass conservation in this procedure is of concern. Takemura [41]
has investigated the adsorption of a surfactant onto the surface of a spherical rising bubble by solving the
Navier–Stokes equation and the convection-diffusion equations of the surfactants in the bulk and on the
surface at steady state. The numerical procedure involves the upwind scheme and the SOR method.

We note that there are significant difficulties in generalizing the above numerical techniques to simulate the
unsteady motion of a deformable bubble under the influence of a soluble surfactant in the low and moderate
Reynolds number regimes. In particular, since our study described here involves flows beyond the Stokes re-
gime, boundary element and dual-reciprocity boundary element methods cannot be employed. In the present
study, we have developed a comprehensive algorithm based on the front tracking method for solving the
formulation.

The front tracking method for the numerical study of flow systems described by Unverdi and Tryggvason
[44,45] explicitly introduces a separate interfacial grid in addition to the fixed regular Marker and Cell (MAC)
grid. This has proven to be an effective and robust numerical method to describe surface related phenomena,
for example, dendritic growth, boiling, bubbly flow [3,4,22,23]. On this basis, in the present study, we propose
a suitably modified front tracking scheme to address the problem of mass transport between the deformable
moving bubble surface and surfactant quantities in the bulk medium. We note that our algorithm deals with
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species transport from the liquid phase onto a bubble interface during adsorption and desorption from the
interface into the liquid phase. Since the bubble phase is devoid of external species, the algorithm must accom-
modate a concentration jump at the interface. This treatment is fundamentally different from those of many
earlier studies, for example, the mass transfer in solidification considered in [22,44] and drop interactions with
a soluble surfactant considered in [49], where the transformed concentration is continuous at the interface.
Thus, the numerical techniques used in discretizing the surface term such as those described in [22,44] cannot
be directly employed here. New techniques for tracking the one-sided interfacial flux and discretization of the
surface integral terms are noteworthy features of the present study. The algorithm conserves the total amount
of surfactant very well. The details are provided in later sections.

2. Problem formulation

In a blood vessel, the core flow may be represented as non-Newtonian while the flow near the vessel wall
boundary mainly consists of blood plasma which may be considered Newtonian. Here, for simplicity, we shall
treat the entire continuous phase (bulk) fluid medium as blood plasma (Newtonian). Although this is a drastic
simplification, the knowledge gained by addressing this problem is invaluable to make progress on the more
realistic coupled formulation involving non-Newtonian and Newtonian fluid flow in a vessel containing an
insoluble or a soluble surfactant together with the presence of a bubble.

We emphasize that we are motivated to develop a numerical method to evaluate the behavior of gas embo-
lism bubbles. Since bubble lodging occurs when bubble diameter is of the same order magnitude as the diam-
eter of the blood vessel, into which it progresses [2,14], the asymmetry is often small and can be ignored. Thus,
it is sufficient to set up the problem in an axisymmetric geometry, as shown in Fig. 1.

We assume that there are two viscous, immiscible and incompressible fluids, labeled j = 1,2, in a circular
tube. Their densities and viscosities are denoted by qj and lj, j = 1,2, respectively. Fluid 2 consists of a gaseous
bubble dispersed in bulk fluid 1. The bubble is initially spherical and is of radius r0 and volume V ¼ ð4p=3Þr30.
The two fluids are separated by an interface with surface tension, r, which varies with surfactant concentration
on the interface, C (mol/cm2). There is soluble surfactant transport from the bulk phase (fluid 1) on to the
Fig. 1. Configuration of a bubble flow in a tube.
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bubble–fluid interface. The radius of the tube is R. The tube length is unrestricted; however, for computational
simplicity, herein we will consider segments of tube of length L and we seek a spatially periodic solution with
periodicity L in the z direction (see Fig. 1). Each tube segment of length L is assumed to contain a bubble. We
will include investigations for various values of L to ascertain the ‘‘best’’ L. The origin of the cylindrical coor-
dinate (r,z) is set at the bottom-left corner of the domain, which is on the axis of symmetry of the tube.

The motion of the continuous and dispersed phases are governed by continuity and incompressible Navier–
Stokes equations [44]. Further, the soluble surfactant is adsorbed on the gas–liquid interface from the bulk
phase (liquid), and there may be desorption. It is assumed that the surfactant exists on the interface as a mono-
layer. The surface motion of the surfactant is governed by a convection-diffusion equation together with an
interfacial adsorption/desorption source term in the case of a soluble surfactant. As stated earlier, an impor-
tant feature of the problem is the presence of a gas–liquid interface. The concentration of the surfactant in the
gas phase is negligible. This leads to a consideration of a concentration jump at the interface.

In terms of variables q, l and diffusion coefficient D, we write,
qðr; z; tÞ ¼ q2Hðr; z; tÞ þ q1ð1� Hðr; z; tÞÞ; ð1Þ
lðr; z; tÞ ¼ l2Hðr; z; tÞ þ l1ð1� Hðr; z; tÞÞ ð2Þ
and
D ¼ D1ð1� Hðr; z; tÞÞ. ð3Þ

Here, D1 is the diffusion coefficient for the surfactant in bulk phase (fluid 1), t is time, and H(r,z, t) is a Heav-
iside function such that,
Hðr; z; tÞ ¼
1 ðr; z; tÞ in fluid 2;

0 ðr; z; tÞ in fluid 1.

�

Following [44,38], the governing equations become:
oqu
ot

þr � quu ¼ �rp þr � lðruþrTuÞ þ
Z
S

rðCðsÞÞj0n0 þ orðCðsÞÞ
os

t0
� �

dðx� x0ÞdS0; ð4Þ

oC
ot

þ ðu � rÞC ¼ r � ðDrCÞ �
Z
S

kaCS 1� C
C1

� �
� kdC exp �A

C
C1

� �� �
dðx� x0ÞdS0; ð5Þ
and
oq
ot

þr � ðuqÞ ¼ 0. ð6Þ
In the above, u is the velocity, p is pressure, s is a measure of arc length from the bubble pole (see Fig. 1), S
denotes the surface of the interface. Also, j is the mean curvature of the surface, n is the outward normal vec-
tor on the interface pointing into bulk fluid 1, and t is the tangential vector; C is the molar concentration in the
bulk (mol/cm3), CS is the concentration in the sublayer (mol/cm3) adjacent to the interface, ka is the coefficient
of adsorption (cm/s), and kd is the desorption coefficient (s�1), ranging from 10�4 to 1 and 10�4 to 106, respec-
tively. A is a prescribed interaction parameter for the Frumkin isotherm. When A = 0, the surface is ideal, and
the Frumkin isotherm reduces to the Langmuir isotherm. C1 is the maximum monolayer surface concentra-
tion for the surfactant, and d denotes the Dirac delta function. The sublayer is assumed to be very thin.

The periodicity condition for velocity in the z direction requires
uðr; 0; tÞ ¼ uðr; L; tÞ; ð7Þ

for 0 6 r 6 R. The no-slip condition at the wall of the tube is described by
uðR; z; tÞ ¼ 0; ð8Þ

for 0 6 z 6 L, and from the assumption of axial symmetry,
ou

or
ð0; z; tÞ ¼ 0. ð9Þ
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The boundary condition for the bulk surfactant concentration C is also periodic in z and is given by
Cðr; 0; tÞ ¼ Cðr; L; tÞ; ð10Þ
for 0 6 r 6 R. The no flux condition across the vessel wall r = R implies,
oC
or

ðR; z; tÞ ¼ 0; ð11Þ
for 0 6 z 6 L, and from the symmetry assumption,
oC
or

ð0; z; tÞ ¼ 0. ð12Þ
Along the interface, the surface concentration of surfactant C is governed by a surface conservation equa-
tion of the adsorbed surfactant (see derivation by Stone [38])
oC
ot

þrs � ðusCÞ þ Cðrs � n̂Þðu � n̂Þ ¼ Dsr2
sCþ jn; ð13Þ
where jn, the diffusional flux and is given by Fick�s law, jn ¼ D1ðn̂ � rÞC, with DS for the surface diffusion
coefficient. On the interface, the flux of surfactant is balanced via adsorption/desorption, given by
kaCS 1� C
C1

� �
� kdC exp �A

C
C1

� �
¼ D1ðn̂ � rÞC. ð14Þ
This is implied by the surface integral term in Eq. (5). Surface tension r(C(s)) is assumed to be governed by the
Frumkin model
r ¼ r0 þ RTC1 ln 1� C
C1

� �
þ A

2

C
C1

� �2
" #

; ð15Þ
where A is a prescribed interaction parameter in this evaluation, r0 is the surface tension for a clean surface, R
is the gas constant, T is absolute temperature, and C1, as stated earlier, is the maximum monolayer surface
concentration for surfactant. When A = 0, it reduces to the Langmuir equation of state
r ¼ r0 þ RTC1 ln 1� C
C1

� �
. ð16Þ
Initially, the spherical bubble is assumed to be in a laminar Poiseuille flow; thus,
uðr; z; 0Þ ¼ 0;

vðr; z; 0Þ ¼ G
4l1

ð1� r2Þ;

(
ð17Þ
where u and v denote the r and z component of flow velocity, G denotes the pressure gradient applied in the z
direction. The surfactant concentration is assumed to be uniform in the bulk liquid phase.
Cðr; z; 0Þ ¼ C0ð1� Hðr; z; 0ÞÞ; ð18Þ

where C0 is the initial bulk concentration.
3. Non-dimensionalization of quantities

We introduce the following scheme for non-dimensionalization:
s ¼ Rs�; r ¼ Rr�; z ¼ Rz�; u ¼ Umaxu
�; t ¼ R=Umaxt�; ð19Þ

p ¼ lUmax=Rp�; r ¼ r0r
�; C ¼ C0C

�; C ¼ C1C
�; ð20Þ
where C0 is the initial bulk concentration, Umax = G/(4l1). Here, * denotes dimensionless quantities. With this
scheme, the dimensionless equations become
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Re
oq�u�

ot�
þ r � q�u�u�

� �
¼ �rp� þ r � l�ðru� þ rTu�Þ þ 1

Ca

Z
S

r�jn0 þ or�

os
t0

� �
dðx� x0ÞdS0; ð21Þ

oC�

ot�
þ ðu� � rÞC� ¼ Pe�1r � ðD�rC�Þ �

Z
S
½StaC�

s ð1� C�Þ � kStdC
� expð�AC�Þ�dðx� x0ÞdS0; ð22Þ

oq�

ot�
þ r � ðu�q�Þ ¼ 0; ð23Þ
and
oC�

ot�
þ r�

s � ðu�sC�Þ ¼ �C�ðr�
s � n̂Þðu� � n̂Þ þ Pe�1

s r2
sC

� þ j�n; ð24Þ
where j�n ¼ ðSta=kÞC�
s ð1� C�Þ � StdC

� expð�AC�Þ, q* = q/q1, l* = l/l1 and D* = D/D1.
We note that there are eight dimensionless parameters involved: the Reynolds number, Re, the Capillary

number, Ca, the bulk Peclect number, Pe, the surface Peclect number, Pes, the adsorption Stanton number,
Sta, the desorption Stanton number, Std, and the dimensionless adsorption depth, k. They are defined by
Re ¼ q1UmaxR=l1; Ca ¼ l1Umax=r0; Pe ¼ UmaxR=D1; Pes ¼ UmaxR=Ds;

Sta ¼ ka=Umax; Std ¼ kdR=Umax; and k ¼ C1=ðC0RÞ. ð25Þ
The dimensionless surface tension r* is related to the dimensionless surface concentration C* through
r� ¼ 1þ El lnð1� C�Þ ð26Þ

for the Langmuir model, and
r� ¼ 1þ El lnð1� C�Þ þ A
2
C�2

� �
ð27Þ
for the Frumkin model, where the elasticity number El = RTC1/r0. The non-dimensional boundary condi-
tions for the velocities and concentration (7)–(12) will retain the same form as before but will now be starred
quantities. We will omit superscript stars in subsequent writing for simplicity.

4. Numerical method

We need to solve the system (21)–(24). In these equations, the surface tension r is a function of the surface
concentration of the surfactant, C, which is affected both by the flow field and the adsorption/desorption pro-
cess. Since the soluble surfactant can be adsorbed from the liquid phase onto the interface and desorbed from
the interface to the bulk, the mass transfer needs to be accurately resolved in the neighborhood of the inter-
face, and this is defined by an interface indicator function. We note that there is a concentration jump at
the interface, since the gas medium has negligible concentration of the surfactant. The presence and extent of
surfactant at the interface changes the surface tension gradient, and this in turn affects the flow field and trans-
port. As a consequence, the instantaneous conservation of mass of the surfactant in the system becomes a very
important feature in the algorithm. For this purpose, we employ a conservative discretization scheme for the
flow field description, and details are provided in a later section. The scheme for the Navier–Stokes solver used
here is similar to that employed by Almgren et al. [1]. Since we need to solve the surface convection-diffusion
equation along the interface of the bubble, the location of the interface forms part of the solution. The front
tracking technique gives us the advantage of explicitly representing the interface, thus numerically enabling to
describe the surface derivatives in (24) at each time step. To evaluate the surface integral, we have followed the
procedure of Peskin [32]. A brief outline of our algorithm follows.

4.1. Basic algorithm

All the bulk state variables (velocity, pressure, density, viscosity, bulk concentration) are defined at the
center of each regular fixed cell in the computational domain, and all the interfacial state variables (surface
tension, surface concentration) are defined on a time dependent movable interfacial grid as in [44]. The time
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centered forcing terms are computed to maintain the second order of accuracy for the discretization scheme.
At each time step, the interfacial grid is moved with the local velocity. This ensures that the velocity boundary
conditions are satisfied. The movement of the interfacial grid is described by
xnþ1
f ¼ xn

f þ unfDt; ð28Þ

where xn

f is the current interfacial grid location, and unf is its local velocity which is obtained by a linear inter-
polation of the velocity values at the nearest neighbors. The basic algorithm consists of the following:

1. Solve the coupled equation system (21)–(23) using a predictor–corrector method. First, proceed with the
predictor step.

2. Move the interface at time step n to time step nþ 1
2
, and evaluate the corresponding interface indicator

function.
3. Solve (24) to get the values of Cnþ1

2(s).
4. Use Eq. (26) or (27) to evaluate rnþ1

2(s), then calculate the time centered integral terms in (21).
5. Calculate the time centered integral terms in (22) by using Cnþ1

2(s).
6. Proceed to the corrector step to get the intermediate velocity, and project it onto a divergence free vector

space.
7. Proceed to the corrector step to get the bulk concentration at the (n + 1)th step.
8. Solve (24) to get the intermediate values of Cn+1(s).
9. Update the location of the interface and evaluate the corresponding interface indicator function at the

(n + 1)th time.

More detailed descriptions of each of these operations are given in the following sections.
4.2. Use of the Navier–Stokes solver for Eqs. (21)–(23)

We note that Almgren et al.�s [1] method may be extended to an adaptive mesh. This would be particularly
advantageous for the investigation of the motion of a big bubble in a tube where the gas–liquid interface is
very near the vessel wall and the bubble almost occludes the tube.

A projection method is applied to solve Eqs. (21)–(23). First, we solve the advection-diffusion equations
(21)–(23) to get the updated density and concentration, and then we compute the intermediate velocity field.
These are given by,
û� un

Dt
¼ �½r � ðuuÞ�nþ

1
2 þ 1

Reqnþ1
2

�
�rpn�

1
2 þ 1

2
½r � lnðrun þrTunÞ þr � lnþ1ðrûþrTûÞ� þ 1

Ca
Hnþ1

2
u

�
;

ð29Þ
Cnþ1 � Cn

Dt
¼ �½r � ðuCÞ�nþ

1
2 þH

nþ1
2

C þ 1

2Pe
½r �DnðrCn þrTCnÞ þr �Dnþ1ðrCnþ1 þrTCnþ1Þ�; ð30Þ

qnþ1 � qn

Dt
¼ �½r � ðquÞ�nþ

1
2; ð31Þ
where � on u denotes intermediate value, and H
nþ1

2
u and H

nþ1
2

C are the integral source terms in Eqs. (21) and (22).
To evaluate the diffusion term in Eq. (30), a central difference scheme is utilized for all cells except for those
that are within one mesh size and adjacent to the interface. For cells adjacent to the interface, special treatment
is needed to ensure that the flux boundary condition (14) is identically satisfied. The detailed implementation is
addressed in the following section. An unsplit second order upwind predictor–corrector scheme is applied for
evaluating the advective terms. The upwind method is an explicit difference scheme which has a time step
restriction for numerical stability. Here, this restriction is expressed as (see Minion [29]):
Dt 6
1

2
min min

Dr
u
;
Dz
v

� �
;min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dr

jHu � ðrpÞj=Re

s ! !
. ð32Þ
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Following the evaluation of advection-diffusion terms, we project this intermediate field onto the space of a
vector field which approximately satisfies the divergence free constraint. In particular, P, the projection oper-
ator, is given by
unþ1 � un

Dt
¼ P

û� un

Dt

� �
; ð33Þ

1

qnþ1
2

rpnþ
1
2 ¼ 1

qnþ1
2

rpn�
1
2 þ ðI� PÞ û� un

Dt

� �
. ð34Þ
The projection operator is computed discretely by solving the Poisson equation
r � 1

qnþ1
2

r/

� �
¼ r � û� un

Dt

� �
; ð35Þ
and updating the velocity and pressure at the new time step by
unþ1 � un

Dt
¼ û� un

Dt

� �
� 1

qnþ1
2

rh/; ð36Þ

pnþ
1
2 ¼ pn�

1
2 þ /. ð37Þ
In the above, / is the pressure correction term.

4.2.1. Interface indicator function

In Eq. (30), the surface integral term, H
nþ1

2
C , denoting surfactant adsorption is discretized on the background

fixed grid. It is important to note that HC has non-zero value only in the partial neighborhood of the interface
in the liquid phase. Also, it is noted that a central difference scheme to evaluate the diffusion term is valid only
for cells located away from the interface. For cells close to the interface, special treatment is needed to ensure
that the boundary condition (14), which is represented as an integral source term in Eq. (30), holds true. A
convenient way to locate these cells is to use an interface indicator function, which is defined at the cell center,
as follows:
I i;jðri; zjÞ ¼

1; ðri; zjÞ in fluid 1; interface does not pass through cell ði; jÞ;
0:5; ðri; zjÞ in fluid 1; interface passes through cell ði; jÞ;
�0:5; ðri; zjÞ in fluid 2; interface passes through cell ði; jÞ;
�1; ðri; zjÞ in fluid 2; interface does not pass through cell ði; jÞ.

8>>><
>>>:

ð38Þ
This indicator function possesses unique features for identifying certain cells. An illustration of the two-
dimensional grid structure and value of indicator function is shown in Fig. 2(a). One can identify which phase
the cell is in simply from the sign of the indicator function Ii,j, and determine whether the cell is in the neigh-
borhood of the interface simply from the magnitude of Ii,j. If |Ii,j| = 0.5, then we call such cell as interfacial cell.
The averaged value of Ii,js on a finer mesh is its value on a coarser mesh. This unique feature can provide much
programming convenience in using a multigrid solver to solve (30).

If the cell center (ri,zj) is located away from the interface, i.e., both the cell and its neighbors are all in a
single phase with no interface passing through, then the diffusion term can be evaluated by central difference.
However, if either the cell (i, j) or at least one of its immediate neighbors (i ± 1,j ± 1) is an interfacial cell, then
one needs to use the flux value in calculating the divergence instead of employing the central difference scheme.
A simple example in one dimension is illustrated in Fig. 2(b). The ith cell is the interfacial cell, where oC

ox ¼ F i

on the interface I. Fi is the mass flux from liquid phase onto the interface. Cell i + 1 is in the liquid phase, and
cell i � 1 is in the gas phase. The second order approximation of the Laplacian value at i + 1 is
o2C
ox2

� �
iþ1

¼
oC
ox

� 	
iþ3

2
� oC

ox

� 	
iþ1

2

h
; ð39Þ
where



a

b

Fig. 2. Mesh and interfacial grid: (a) two dimensions, (b) one dimension.
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oC
ox

� �
iþ1

2

¼ F i; ð40Þ

oC
ox

� �
iþ3

2

¼ Ciþ2 � Ciþ1

h
. ð41Þ
To compute the Laplacian at i � 1, we use oC
ox

� 	
i�1

2
¼ 0.

For a two-dimensional problem, the horizontal and vertical fluxes of the interfacial cell are defined as the
projected values of $C in the horizontal and vertical direction, respectively. Thus,
oC
oxk

¼ rC � nk; ð42Þ
where nk ¼ n � k̂, and k̂ is the kth unit vector.
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4.2.2. Discretization of surface integral term

To compute the surface integral terms, H
nþ1

2
u and H

nþ1
2

C , in Eqs. (29) and (30), numerical interfacial integra-
tion is needed. Since the interface between the two fluids is explicitly tracked by the additional grid, the surface
integral term can be easily evaluated. This surface quantity is distributed to the regular MAC grid by multi-
plication with a delta function which is here approximated by a delta sequence function with a finite support.
Since the mass transport of soluble surfactant only occurs in the liquid phase, the surface integral in the bulk
concentration Eq. (30) requires special care.

For the surface tension term in Eq. (29), H
nþ1

2
u is given by
Hnþ1
2

u ¼
Z
S

rðCðsÞÞj0n0 þ or
os

t0
� �

dðx� x0ÞdS0
� �nþ1

2

�
X
i

Z
S
nþ1

2
i

r C s
nþ1

2
i


 �
 �
j0
in

0
i þ

ornþ1
2

os
t0i

 !
d1;hðx� x0ÞdSnþ1

2
i ; ð43Þ
where d1,h is a delta sequence function defined by
d1;hðr; zÞ ¼
1
4h2

1þ cos p
h r
� 	� 	

1þ cos p
h z
� 	� 	

; jrj < h and jzj < h;

0; otherwise;

�
ð44Þ
and i denotes a surface element. Here, h denotes the mesh size; n and t are calculated using a spline fit through
the locations of the interfacial grid. Following [44], we find the tangents through a Legendre polynomial fit.
For an axi-symmetric setup, following Weatherburn [46], it can be shown that jn = �ir/r + ot/os. Thus, we
have,
Z

Si

rjnds ¼ r
Z
Si

� ir

r
þ ot

os

� �
ds � r ðt2 � t1Þ � si

ir

r

� �
; ð45Þ
where si is the arc length of the ith element Si. Therefore, instead of finding the curvature, we only need to find
the tangent at the end points. The normal can now be calculated.

For each segment of the surface S
nþ1

2
i , knowing the value of Cnþ1

2, rnþ1
2 may be computed through
rnþ1
2 ¼ 1þ El ln 1� Cnþ1

2


 �
ð46Þ
for the Langmuir isotherm, or
rnþ1
2 ¼ 1þ El ln 1� Cnþ1

2


 �
þ A

2
Cnþ1

2
2

� �
ð47Þ
for the Frumkin isotherm. The details on computing this integration term follow the procedure described by
Unverdi and Tryggvason [44,45].

Next, to compute the surface integral term, Hn
C in Eq. (30), we note that
Hn
C ¼

Z
S

StaCsð1� CÞ � kStdC expð�ACÞð Þdðx� x0ÞdS0
� �n

�
X
i

Z
S
nþ1

2
i

StaCsð1� C�
i Þ � kStdCi expð�ACiÞ

� 	
d2;hðx� x0ÞdSn

i . ð48Þ
Note that in Eq. (30), surfactant can only be depleted from the bulk phase (fluid 1). If the standard delta func-
tion discretization, which has support on both sides of the interface, were to be applied, then the concentration
of surfactant inside the bubble would become non-physical (negative). This is displayed in Fig. 3. Thus, we
need to construct a new discretized delta function di,+, whose support is only in the bulk phase (liquid). This
is defined as follows:
di;þðr; zÞ ¼
2di;hðr; zÞ; jrj < h; jzj < h and ðr; zÞ in fluid 1;

0; otherwise.

�
ð49Þ



Fig. 3. Adsorption of an initially clean bubble in a tube with delta function d1,h. Bubble interface is the thicker line. Bulk concentration
contour at t = 2, (a) �0.001 (innermost contour), (b) �0.01, (c) �0.05, (d) �0.01, (e) 0.7, (f) 0.9, (g) 0.999 (outermost contour). r0 = 0.5.
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where i = 1,2,3; di,h(r,z) is a regularly discretized delta function with a support on both sides of the inter-
face. It is shown in Appendix A that for a simple one-dimensional case, the above function represents a
delta sequence function, and has the same distribution as the delta function. However, in two dimensions,
a numerical integration of this delta sequence function does not yield the exact value of unity as would be
expected. In this context, we have tested three different forms of discretization of the delta function,
d1,+(r,z), d2,+(r,z) and d3,+(r,z), in order to ascertain the ‘‘best’’ representation in the process of comput-
ing Hn

C. Thus,
d1;þðr; zÞ ¼
2

mh2
1� jrj

h


 �
1� jzj

h


 �
jrj < h; jzj < h; and ðr; zÞ in fluid 1;

0; otherwise.

(
ð50Þ

d2;þðr; zÞ ¼
2
4h2

1þ cos p
h r
� 	� 	

1þ cosðph zÞ
� 	

jrj < h; jzj < h; and ðr; zÞ in fluid 1;

0; otherwise.

�
ð51Þ

d3;þðr; zÞ ¼
2

3�4jrhjþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8jrhj�16jrhj

2
p

8

� �
3�4jzhjþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8jzhj�16jzhj

2
p

8

� �
jrj < h; jzj < h; and ðr; zÞ in fluid 1;

0; otherwise.

8<
: ð52Þ
The ‘‘best’’ choice of d will enable a very good satisfaction of the mass conservation requirement. Fig. 4
shows a measure for the mass conservation, (Mt �Me)/Ms, as a function of dimensionless time t. Here,
Mt is the total amount of surfactant in the system at any given instant (bulk plus surface), Me is the total
amount of surfactant initially in the system (only bulk quantity, no surface) at time t = 0, and is a pre-
scribed quantity, while Ms is the total amount of surfactant on the surface at the given instant. As seen in
Fig. 4, the ‘‘error’’ expressed as a percentage of surface concentration is about 1% when d3,+ is employed.
This choice of delta function discretization is noted to out-perform the other two choices. We will employ
this d3,+ in all of the evaluations. This procedure is a modification of the standard front tracking
procedure.



Fig. 4. Total mass error as a percentage of surface concentration for d1,+(r,z), -Æ-Æ-Æ; d2,+(r,z), –––; and d3,+(r,z), ——.
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4.2.3. Discretization of the initial condition

The discretization of Eq. (18) requires some careful thought. In principle, for a fixed grid (ri,zj) (cell center),
C(i,j) may be set equal to zero when (ri,zj) is inside the bubble surface, and equal to C0 otherwise, (in the liquid
phase). However, this provides a non-smooth, stepwise transition. With such a description, the concentration
contours will not be sufficiently accurately determined, and in particular, the innermost ones will appear jag-
ged. In the present study, a more accurate discretization of the concentration in each cell through which the
interface traverses is implemented. Instead of a stepwise transition, the initial bulk concentration at the cell
center is set equal to the product of the volume fraction of the cell with C0. Here, the volume fraction is defined
as the ratio of the volume of that portion of the cell which is in the liquid phase to the total volume of the cell
(portion in liquid phase plus portion in gas phase). Thus, the contours are accurately evaluated.

4.3. Transfer between the bulk and the surface

To solve the surface convection-diffusion equation (24), we use a fourth order Runge–Kutta explicit time
discretization. Thus,
Cnþ1 ¼ Cn þ Dt
6
ðk1 þ 2k2 þ 2k3 þ k4Þ; ð53Þ
where
k1 ¼ f ðCn; tnÞ; ð54Þ

k2 ¼ f Cn þ k1
2
; tn þ Dt

2

� �
; ð55Þ

k3 ¼ f Cn þ k2
2
; tn þ Dt

2

� �
; ð56Þ

k4 ¼ f ðCn þ k3; tn þ DtÞ; ð57Þ
and
f ðCðtÞ; tÞ ¼ �rhs � ðusðtÞCðtÞÞ � CðtÞðrhs � n̂Þðus � n̂Þ þ Pe�1
s r2

hs
CðtÞ þ jn. ð58Þ
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Here, jn = (Sta/k)Cs(1�C)�StdCexp(�AC), us is the time dependent surface velocity, C(t) is the time dependent
and spatially varying surface concentration, and Cs is the bulk concentration in the thin sublayer. The quan-
tity, us(t), is calculated as projection of the interfacial velocity in the tangential direction. We note that we are
employing the Langmuir and the Frumkin isotherms. With the Frumkin isotherm, there is a non-linear term
as noted from the left hand side of Eq. (14). The time step, Dt for the Frumkin isotherm case will therefore be
different from that for the Langmuir case since the time step has to satisfy the stability criterion in either case.
Physically, Cs is a constant in the sublayer in a direction normal to the interface, but will vary in the h
direction.

The thickness of the sublayer is assumed to be much smaller than the mesh size, and we only know the value
of C at the centers of the grids in the vicinity of the interface. Therefore, we need an extrapolation scheme to
evaluate CS at any location in the sublayer, in particular at any given location on the outer boundary of the
sublayer which is away from the bubble interface. Once this is determined, since the value of Cs at any point on
the sublayer boundary is a constant in a direction normal to it, we can infer the value of Ci at the correspond-
ing point on the interface by setting Ci = Cs for the corresponding point. In the algorithm, the value of Cs is
extrapolated from the bulk concentration values at nearby Euclidean points which are located in fluid 1 (see
Fig. 5). Specifically, for each interfacial grid point of interest, labeled O in Fig. 5, we can locate its four closest
Euclidean fixed background points. For example, if there are two closest points in the bulk fluid 1, such as C
and D in Fig. 5(a), and if |CO| = r1, and |DO| = r2, then,
Ci ¼ CsjO ¼ CCr2 þ CDr1
r1 þ r2

. ð59Þ
a b

c

Fig. 5. Extrapolation of sublayer values on the interface.
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To use the above extrapolation scheme consistently, there are two additional cases which have to be con-
sidered. These are shown in Fig. 5(b) and (c). If among its four closest fixed grid points, there is only one point
in the bulk fluid 1, as illustrated in Fig. 5(b), we compute values at point O1 and O2 as the average value of D
and E, and D and F, respectively. Then we invoke the previous description and may use O1 and O2, as in Eq.
(59). Here, E and F are fixed grid points one mesh size away from D in the same direction as outer normal
components. If there are three closest fixed grid points in the bulk fluid 1, as illustrated in Fig. 5(c), we com-
pute values at point O1 and O2 which are the average values of B and D, and C and D, respectively. As before,
we can use these values to compute Cs|O from Eq. (59). In this manner, we determine the instantaneous con-
centration value on the interface.

Next, note that jn = (Sta/k)Cs(1 � C) � StdCexp(�AC) in Eq. (58) is the sourcing term of the bulk concen-
tration equation. Also, the total amount of mass transfer implied in Eq. (22) should be the same as that given
by the surface integration of source term j*n in the surface equation (24). This may be noted from the
following:
Z

V

Z
S
ðSta=kÞCsð1� CÞ � StdC expð�ACÞ½ �dðx� x0ÞdS0 dV

¼
Z
S

Z
V
ðSta=kÞCsð1� CÞ � StdC expð�ACÞ½ �dðx� x0ÞdV dS0

¼
Z
S
ðSta=kÞCsð1� CÞ � StdC expð�ACÞ½ �dS; ð60Þ
where V is a thin shell that contains the interface S. In the numerical evaluation of these quantities, there will
be a small error in mass conservation based on the choice of the delta function representation in the procedure.
However, employing the d3,+, the total mass of surfactant is sufficiently well conserved and this is noted in
results discussed in a later section. We note that the quantity of surfactant taken from the bulk phase is limited
by availability of the local amount of the surfactant, and the value of C physically can never become negative.
Thus, at the center of a cell located adjacent to the interface but inside the bubble, we need to satisfy
�n̂ � rCjgas ¼ 0 ðflux freeÞ ð61Þ
while �n̂ � rCjliquid at the center of a cell located adjacent to the interface but in the liquid phase is given by
Eq. (14). This treatment ensures that C never becomes negative.
5. Results and discussion

We examine a bubble moving in a cylindrical tube subject to a pressure driven flow field, in the presence of
either a soluble or an insoluble surfactant. The parameters for computation are taken to be R = 1 cm,
L = 3 cm, q1 = 1 g/cm3, q2 = 0.1 g/cm3, l1 = 0.01 g/(cm s), and l2 = 0.01 g/(cm s). Although q2 chosen here
does not correspond to a gas bubble, the (l1q2)/(l2q1) value is representative of the typical kinematic viscosity
ratio for an air bubble presence in the blood plasma. With this understanding, the dispersed phase will hence-
forth be called a bubble for simplicity. The dimensionless initial radius of the clean bubble is taken to be
r0 = 0.5 or r0 = 0.9. The range of parameters investigated correspond to Re = 1, 10, based on tube radius,
and Ca = 0.01. The computational results shown here employ a dimensionless mesh size (scaled with R) of
h = 2�6, and the reason for this choice is explained in a later section. In the following, unless stated otherwise,
the Langmuir isotherm is employed.

First, we describe a number of tests to justify the choice of our computational domain corresponding to
L = 3, and the mesh size, h = 2�6, chosen in this numerical study.

5.1. Computational domain study

We first consider the case where Re = 10 and Ca = 0.01. The mesh size is set at h = 2�6, and the density
ratio, q2/q1 = 0.1. For these values, we test the algorithm for different periodic lengths, L in the z direction.
Since we assume periodicity in z direction in any single bubble study, the computational domain should be
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appropriately large enough such that any interaction between the bubbles located in each computation cell is a
minimum. We have computed the bubble motion by solving the governing equations subject to initial and
boundary conditions for L = 1.5, L = 2, L = 3 and up to dimensionless time t = 100. These are displayed
in the Fig. 6. A total about 3 · 106 time steps are used. The time step, Dt, is chosen to satisfy the stability
restriction imposed by inequality (32), and is therefore not a constant for various L. We note, from the
Fig. 6, that the description of bubble motion in the Poiseuille flow is influenced by the choice of L. However,
the predictions for L = 2 and L = 3 essentially coincide. On this basis, L = 3 is chosen for subsequent
computations.

Themesh size and the density ratio in the computations discussed in this paper have been chosen on the basis of
computational feasibility. Themajor computational cost in this study arises from the projection step (step 6of the
algorithm) that is used to solve the variable coefficient Poisson equation (Eq. (35)). We use a multigrid method
with a V-cycle for a level projection. All coarse levels are obtained by coarsening the fixed Eulerian grid. The
relaxation step consists of two iterations of red-black Gauss–Seidel. Following Almgren et al. [1], the solution
on the coarsest level is obtained by using a diagonally preconditioned conjugate gradient routine.

As shown in Fig. 7, as the density ratio, (q2/q1), is decreased toward a more realistic value of 0.001 which
would correspond to a gaseous bubble, the CPU units for describing a single bubble motion significantly in-
crease. We note that 104 CPU units correspond to 2.8 h on our 2 GHz single processor. In view of this large
computational requirement, for subsequent computations, we set the density ratio, (q2/q1), to be 0.1. As illus-
trated in Fig. 8, the CPU units also significantly increase with an increase in the number of MAC grid points in
the r direction, h�1. Again, to compute our results with a reasonable computational effort, we select the mesh
size to be h = 2�6, in the r and z directions, for subsequent computations.

5.2. Total mass conservation test for the adsorption/desorption scheme of a soluble surfactant

In problems dealing with soluble surfactants, it is very important to conserve the total mass of the soluble
surfactant since even a slight trace of surfactant may significantly alter the surface tension, and an error in
mass conservation may lead to spurious results. For soluble surfactant transport, at every instant of the
Fig. 6. Optimal computational domain determination for a clean bubble motion in Poiseuille flow, Re = 10, Ca = 0.01, t = 100, solid line
is the initial position. ––– L = 1.5, -Æ-Æ- L = 2 and —– L = 3.



Fig. 7. CPU units for a clean bubble moving in Poiseuille flow for different q2/q1 until t = 10, Re = 10, Ca = 0.01.

Fig. 8. CPU units for a clean bubble moving in Poiseuille flow for different number of mesh points h�1 until t = 10, Re = 10, Ca = 0.01.
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process, the amount of surfactant adsorbed on to the interface should be equal to the amount removed from
the bulk phase. This feature will be examined here by considering an initially clean bubble in the presence of a
soluble surfactant that is initially uniformly distributed in the bulk phase.

For this test, we let the initial bulk concentration, C0 = 1 · 10�6 mol/cm3, and take the saturation surface
concentration to be, C1 = 5 · 10�8 mol/cm2, ka = 0.1 cm/s, and kd = 0.05 s�1. We choose a non-dimensional
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time that is obtained by dividing the dimensional physical time for the process by the typical time scale gov-
erning the adsorption process (r0/ka). The quantity, ka, is the adsorption coefficient. The quantity (r0/ka) is
much smaller than the bulk diffusion time scale, R2/D, and we have chosen (r0/ka) for non-dimensionalization.
The desorption time scale will not be the appropriate one.

As shown in Fig. 9(a) and (b), the soluble surfactant gets transported from the bulk phase onto the interface
due to the prevailing concentration gradient. This causes a decrease in the total amount of surfactant in bulk
phase. The percentage error in satisfying mass conservation at any instant of the computation is given by the
ratio (Mt �Me)/Ms · 100. This is plotted in Fig. 10 as a function of time. Within a short duration of the pro-
cess, this error is seen to asymptotically approach 1% of the surface concentration.
a

b

Fig. 9. Mass conservation test for soluble surfactant adsorption onto a clean bubble.



Fig. 10. Percentage error of mass conservation test for soluble surfactant adsorption onto a clean bubble.
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5.3. Convergence test of the adsorption/desorption scheme

We consider a static bubble. For given ka, kd, number of interfacial grid points, and initial conditions, we
vary the size of the fixed background grid and conduct the test to determine the order of convergence. Ap-
proach to convergence is implied by a reduction in the predicted change of surface concentration distribution
with a change in the grid size. Next, for given ka, kd, background grid size, and initial conditions, the size of the
interfacial grid is changed to ascertain similar convergence. As illustrated in Fig. 11(a), at given instant of time
t = 0.1 (small time duration), the solution for the surface concentration, C, is seen to converge to a particular
form of distribution. Here, the number of interfacial grid points are fixed, N = 256. As the mesh size is
decreased from 2�5 to 2�7, the variations in the prediction of surface concentration appear to decrease. To ascer-
tain the rate of convergence, we plot the logarithm of the L2 norm of the absolute values of the difference be-
tween the solution at the finest level and the solution at the coarser levels as shown in Fig. 11(b). The rate of
convergence is found to be second order (slope of the line is 2.0). There is a variation of about one percent
from the mean in the predictions of the surface concentration by the algorithm at this instant of time,
t = 0.01. This variation arises due to the numerical extrapolation of CS in the integral term of the bulk sur-
factant transport equation.

Another test for convergence is carried out with a fixed background dimensionless mesh size h = 2�6, in
both r and z directions. As shown in Fig. 12(a), as the number of the grid points on the interface are increased
from 64 to 256, the solution C is seen to converge. The rate of convergence is seen to be higher than first order
(slope of the line �1.44) (Fig. 12(b)).

5.4. Surface adsorption/desorption test

To test our adsorption/desorption scheme, first, we consider a clean spherical bubble with a known sur-
face tension of value r = 1 dyne/cm immersed in an initially quiescent fluid containing a soluble surfac-
tant, and turn on the surface adsorption scheme. The instantaneous variations of surface concentration
C along the arc length from h = 0 to h = p are plotted in Fig. 13. As expected, since the bubble is
stationary, C increases with time in an almost uniform fashion along the interface. The magnitude of var-
iation in surface concentration C along the interface could be as high as about 2% during early times. This
variation, however, decreases with increasing time. Next, we consider a spherical bubble which is initially



a

b

Fig. 11. Convergence test for surface concentration with adsorption for a stationary bubble in a tube. t = 0.1s, N = 256, ka = 0.1 cm/s,
kd = 0.05 s�1, C0 = 1 · 10�6 mol/cm3, C1 = 2.5 · 10�9 mol/cm2, D = 1 · 10�3 cm2/s, DS = 1 · 10�2 cm2/s. (a) The mesh size: –––, h =

2�5; -Æ-Æ-, h = 2�6; —–, h = 2�7. (b) log L2 Ch � C 1
128

��� ���
 �n o
as a function of log(h) for h = 2�5, 2�6.
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fully covered with the soluble surfactant at a saturated surface concentration, C1, on the interface. The
bubble is immersed in a quiescent fluid containing the surfactant. For this case, ka is set equal to zero,
and only kd has a non-zero value. The surface concentration C uniformly decreases with time. This is
shown in Fig. 14.

Fig. 15 displays the equilibrium spatial concentration contours for the surfactant at various locations in the
bulk medium away from the bubble interface, at a given instant of time. Because of interfacial adsorption, the
soluble surfactant is transported from the bulk phase onto the interface, causing a reduction in bulk concen-
tration as we approach the interface.



a

b

Fig. 12. Convergence test for surface concentration with adsorption for a stationary bubble in a tube. t = 0.1s, h = 2�6, ka = 0.1 cm/s,
kd = 0.05 s�1, C0 = 1 · 10�6 mol/cm3, C1 = 2.5 · 10�9 mol/cm2, D = 1 · 10�3 cm2/s, DS = 1 · 10�2 cm2/s. (a) The mesh size: –––,

N = 64, -Æ-Æ-; N = 128, —–; N = 256. (b) log L2 C1
N
� C 1

256

��� ���
 �n o
as a function of log(1/N) for N = 64, 128.
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Next, we consider a bubble with a large dimensionless radius r0, (r0 = 0.9), and hence a larger volume. In
this case, the part of the active interface that is in the vicinity of the equatorial plane of the bubble is closer to
the tube wall than the interface locations near the poles. As a result, this configuration will influence the
concentration distribution in the bulk medium adjacent to the wall boundary. As illustrated in Fig. 16, when
the final adsorption equilibrium is reached, the bulk concentration is non-uniformly distributed in the z direc-
tion. A depletion of surfactant concentration is noted to occur adjacent to the tube wall. This feature is similar
to what Gaver and co-workers [18] has observed during the steady state motion of a semi-infinite bubble in a
solution containing a soluble surfactant.



Fig. 13. Surface concentration along the interface for adsorption on a stationary bubble in a tube. r0 = 0.5, ka = 1 cm/s, kd = 10 s�1,
C0 = 1 · 10�6 mol/cm3, C1 = 2.5 · 10�9 mol/cm2, D = 1 · 10�3 cm2/s, DS = 1 · 10�2 cm2/s for t = 0, 0.002, 0.004, 0.006, 0.008, 0.01.

Fig. 14. Surface concentration along the interface for adsorption on a stationary bubble in a tube. r0 = 0.5, ka = 0 cm/s, kd = 10 s�1,
C0 = 1 · 10�6 mol/cm3, C1 = 2.5 · 10�9 mol/cm2, D = 1 · 10�3 cm2/s, DS = 1 · 10�2 cm2/s for t = 0, 0.01, 0.02, 0.03, 0.04, 0.05.
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5.5. Langmuir model vs. Frumkin model

Because of the existence of different macromolecules in blood and diverse behaviors of surfactant adsorp-
tion/desorption, various models, such as Langmuir and Frumkin models, have been used to explain the
observed complicated behaviors [7]. In the previous calculations, Langmuir isotherm is assumed for the
adsorption model. However, the flexibility of our code enables extension to describe other adsorption iso-
therms. To illustrate this feature, we now adopt a Frumkin isotherm given by



Fig. 15. Adsorption of an initially clean bubble in a tube. Bulk concentration contour at t = 2, C = 0.65 (innermost contour), 0.8, 0.9,
0.95, 0.99 (outermost contour). r0 = 0.5.

Fig. 16. Adsorption of a initially clean bubble with larger volume in a tube. Bulk concentration contour at t = 2, C = 0.65 (innermost
contour), 0.8, 0.9, 0.95, 0.99 (outermost contour). r0 = 0.9.
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dCðtÞ
dt

¼ kaCs 1� C
C1

� �
� kdC exp �A

C
C1

� �� �
. ð62Þ
Here, we choose A = 2, ka = 0.1, and kd = 50.
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As shown in Fig. 17, for a static bubble, we note that the Langmuir and Frumkin adsorption models drive
the surface concentration toward different equilibrium surface concentration values. These are 1.4703 · 10�9

and 1.9796 · 10�9 mol/cm2, for the two isotherms, respectively. The difference between the two isotherms is in
the desorption term, and the usage of any specific isotherm is of significance when kd is large enough. This
could potentially impact on the description of the dynamic behavior of the bubble.

5.6. Surface diffusion test

Here, we test the algorithm for a stationary spherical bubble with only the surface diffusion scheme turned
on. There are 256 grid points along the interface. The time step needs to satisfy the stability requirement
a

b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

s

Γ

t=10 

t=20 

t=50 

Fig. 17. Adsorption of a initially clean bubble. Surface concentration contours at t = 10, 20, 30, 40 and 50 s. (a) Langmuir model (b)
Frumkin model.



Fig. 18
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Dt 6
2h2

Pes
. ð63Þ
On this basis, Dt is chosen as 2 · 10�6 for Pes = 10. Initially, there is a prescribed variation in the distribution
of the surface concentration, C0 = (1 � cos(h))/2. As shown in Fig. 18, the surface diffusion process acts to
even out the initially non-uniform distribution of the surfactant. An exact solution for this variation has been
given by James and Lowengrub [20] as
Cðh; tÞ ¼ 1

2
1� exp

�2t

PesR2

� �
cos h

� �
. ð64Þ
Our numerical prediction agrees well with the exact solution in this case.

5.7. Test for the Marangoni effect

To test for the Marangoni effect, we consider a bubble that is initially covered with a non-uniformly dis-
tributed surface concentration C given by, C = C0*(1 + tanh(4(h/p � 0.5))). Initially, bubble and the bulk
medium are both quiescent. We let, q1 = 1, q2 = 0.1 and l1 = 0.1, l2 = 0.01 for this test. Since there is a var-
iation of surface concentration along the interface, and the surface tension, r(C), depends on surface concen-
tration C as given by Eq. (26), the Marangoni effect will initiate a propulsion of the bubble. This causes the
bubble to move away from its initial position, as shown in Fig. 19(a). The Marangoni number is defined as
Ma = E/Ca, where E is the elasticity number, and Ca is the Capillary number. For this test, this number is
small. However, Marangoni effect still exists. As the surface concentration evolves, the shape of the bubble
undergoes slight changes and this is illustrated in Fig. 19(b). The velocity field of the bubble and its surround-
ing fluid at t = 5 is shown in Fig. 20(a). It is interesting to note the evolution of C along the interface in
Fig. 20(b). Since there is more surfactant at the bottom portion of the bubble, (h = 0), than toward the
top, (h = p), a gradient is created and this causes a Marangoni flow along the interface. The flow along the
interface advects the surfactant toward the top of the bubble. This results in a lowering of the concentration
at the bottom (h = 0). At a later time, t = 5, the maximum surface concentration is located almost midway
between the top and bottom (h � p/2).
. Surface diffusion test for surface concentration of surfactant C on a stationary bubble in a tube. Pes = 10, -Æ-Æ-; exact solution, —–
ical solution.



a b

Fig. 19. Marangoni effects for an initially non-uniform surfactant covered bubble in a tube. (a) Bubble locations at t = 0, 5, (b) bubble
shapes at t = 0, 5 (shifted back to the initial location).

a b

Fig. 20. Marangoni effects for an initially non-uniform surfactant covered bubble in a tube. (a) Streamline in the reference frame of bubble
at t = 5, (b) surface concentration C at t = 0, 1, 2, 3, 4, 5.
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5.8. Surfactant coated bubble in Poiseuille flow

Next, we numerically simulate the motion of a bubble covered with an insoluble surfactant and in Poiseuille
flow, and compare the motion with that of a clean bubble in a surfactant free environment, also in Poiseuille
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flow. The dimensionless parameters are Re = 1, and Ca = 0.01. For the insoluble surfactant, since there is no
adsorption or desorption, Sta = Std = 0.0, and for the contaminated bubble, we initially assume a uniform dis-
tribution of surface concentration, C, of the insoluble surfactant. As shown in Fig. 21(a), the contaminated
bubble also moves in the direction of the flow but at a lower rate of speed compared to that of the clean bub-
ble. Because of the surface convection, the surfactant moves along the interface causing a build up of surface
concentration at the rear part of the interface (near h = 0), as shown in Fig. 21(b). The surface tension is
a b

Fig. 21. Motion of an initially uniformly covered bubble in Poiseuille flow in the presence of insoluble surfactant. Re = 1, Ca = 0.01,
Pe = 100, Pes = 100, Sta = 0, Std = 0, k = 0.01.

a b

Fig. 22. Motion of an initially uniformly covered bubble in Poiseuille flow in the presence of soluble surfactant. Re = 1, Ca = 0.01,
Pe = 100, Pes = 100, Sta = 0.1, Std = 0.05, k = 0.01.



a b

Fig. 23. Velocity for a bubble (a) without surfactant, (b) with soluble surfactant. Re = 1, Ca = 0.01, Pe = 100, Pes = 100, Sta = 0.1,
Std = 0.05, k = 0.01.
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reduced at the rear while it is increased in the front portion. This gives rise to Marangoni effect causing a sur-
face tension gradient driven motion in a direction opposite to that of the primary flow. The net result is a slow-
ing down of the contaminated bubble motion. Equivalently, since the presence of the surfactant increases the
drag on the bubble, the contaminated bubble moves at a reduced speed.

Next, we consider a bubble in Poiseuille flow but now in the presence of a soluble surfactant. The adsorp-
tion/desorption scheme is turned on. With Re = 1, and, Ca = 0.01, the bubble is initially covered with a uni-
form distribution of a soluble surfactant. This initial surface concentration volume is set to be the same as that
for the insoluble surfactant case studied earlier. Since the chosen initial surface concentration is below its equi-
librium value, surfactant is adsorbed onto the interface from the bulk phase. At a given instant of time, as seen
in Fig. 22(b), the total surface amount for the soluble surfactant case happens to be larger than that for the
corresponding insoluble surfactant case. This results in an increased reduction of the surface tension at the
front of the bubble, resulting in a stronger Marangoni effect. As a consequence, the bubble in the presence
of the soluble surfactant is noted to move even slower than a bubble in the presence of an insoluble surfactant
(Fig. 22(a)).

As shown in Fig. 23, there is a fundamental difference between the velocity field for a clean bubble and a
contaminated one in a pressure driven flow. A clean bubble travels with the bulk fluid. However, a
contaminated bubble�s motion is retarded by the circulation induced by the surface gradient of the surfactant.

6. Conclusion

Based on a front tracking scheme, a comprehensive algorithm has been developed for studying the
axisymmetric motion of a deformable bubble contained in a tube and in the presence of a soluble/insol-
uble surfactant. The major interest here is on the dynamic adsorption of the soluble surfactant which non-
linearly alters the surface tension, and this in turns affects the flow and transport in a complicated way.
Also, since a bubble–liquid interface is being examined, there is a need to accommodate a concentration
jump across the interface in the evaluation of flow and transport. The adsorption scheme for the soluble
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surfactant is carefully designed such that the total mass of the surfactant is well conserved and mass flux
is accurately resolved by using an interface indicator function. This represents an advance in treating
problems of this class. Tests on the efficacy of various aspects of the algorithm have been carried out.
These include tests for the convergence of the adsorption scheme, for the adsorption/desorption scheme,
for surface diffusion, for the Marangoni effect, and the combined effects of an imposed Poiseuille flow and
Marangoni flow. The algorithm has the flexibility of studying different models for adsorption and surfac-
tant surface tension models, such as the Langmuir and Frumkin models. These models have significant
practical relevance. The numerical results are qualitatively consistent with analytical results where avail-
able. The results presented include an example of Marangoni flow which causes a bubble to propel out
of its initial static location due to the development of a surface tension gradient. It is also shown that
the bubble motion in Poiseuille flow may be significantly slowed down due to the presence of a soluble
surfactant in the bulk medium. For identical initial surface concentrations of the surfactant, the bubble
motion is more retarded in the presence of a soluble surfactant compared to that of an insoluble surfac-
tant. In that case, the Marangoni induced motion is in a direction opposite to that driven by the bulk
pressure. Our study indicates that as the location of the adsorptive interface gets closer to the tube wall,
the bulk fluid in the vicinity of the interface may become depleted of surfactant, an observation that has
particular significance in understanding gas embolism and for developing therapeutic measures. Further
detailed study is needed to clarify this observation.

Our motivation for this algorithm is to provide a platform for computing intravascular multiphase flow
where complicated interfacial mechanisms are at play. Further implementation of the adaptive mesh capa-
bility of the present algorithm is expected to provide a significant benefit for studies of the gas embolism
problem and the associated surfactant treatment issues. This study has shown that computational costs
become prohibitively large with dimensionless mesh size approaching 2�7 and the density ratio q2/q1 �
0.001. This points to the need for Supercomputer facilities for investigating realistic parameter ranges that
have direct value for applications in health sciences.
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Appendix A

In one dimension, suppose liquid phase presents in the interval x > 0.
d2;hðxÞ ¼
2
h 1� x

h

� 	
; 0 6 x < h;

0; otherwise.

�
ð65Þ
Then, denoting the interval [0,h) as Ik, we have
hd2;hðxÞ;/i ¼
Z
Ik

d2;hðxÞ/ðxÞdx ¼ /ð0Þ þ
Z
Ik

d2;hðxÞ /ðxÞ � /ð0Þð Þdx ð66Þ
and
 Z
Ik

d2;hðxÞ /ðxÞ � /ð0Þð Þdx
����

���� 6
Z
Ik

d2;hðxÞj/ðxÞ � /ð0Þjdx 6 max j/ðxÞ � /ð0Þj ð67Þ
If / is continuous at x = 0, the maximum tends to 0 as h ! 0. Therefore
lim
h!0

< d2;hðxÞ;/ >¼ /ð0Þ ð68Þ
for every / continuous at origin, and d2,h(x) distributionally converges to delta function.
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